mmdetection绘制PR曲线
发现直接使用matplotlib
绘制曲线在修改图片上一些细节是比较麻烦,因此我决定使用Excel来绘制PR曲线
import os
import mmcv
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from mmcv import Config
from mmdet.datasets import build_dataset
def getPrecisions(config_file, result_file, metric="bbox"):
"""plot precison-recall curve based on testing results of pkl file.
Args:
config_file (list[list | tuple]): config file path.
result_file (str): pkl file of testing results path.
metric (str): Metrics to be evaluated. Options are
'bbox', 'segm'.
"""
cfg = Config.fromfile(config_file)
# turn on test mode of dataset
if isinstance(cfg.data.test, dict):
cfg.data.test.test_mode = True
elif isinstance(cfg.data.test, list):
for ds_cfg in cfg.data.test:
ds_cfg.test_mode = True
# build dataset
dataset = build_dataset(cfg.data.test)
# load result file in pkl format
pkl_results = mmcv.load(result_file)
# convert pkl file (list[list | tuple | ndarray]) to json
json_results, _ = dataset.format_results(pkl_results)
# initialize COCO instance
coco = COCO(annotation_file=cfg.data.test.ann_file)
coco_gt = coco
coco_dt = coco_gt.loadRes(json_results[metric])
# initialize COCOeval instance
coco_eval = COCOeval(coco_gt, coco_dt, metric)
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
'''
precisions[T, R, K, A, M]
T: iou thresholds [0.5 : 0.05 : 0.95], idx from 0 to 9
R: recall thresholds [0 : 0.01 : 1], idx from 0 to 100
K: category, idx from 0 to ...
A: area range, (all, small, medium, large), idx from 0 to 3
M: max dets, (1, 10, 100), idx from 0 to 2
'''
return coco_eval.eval["precision"]
def PR(config, result, out, thr=0.5):
"""Export PR Excel data
Args:
config_file (list[list | tuple]): config file path.
result_file (str): pkl file of testing results path.
out (str): path of excel file
thr(float): output PR Threshold. Optional range: {-1, [0.5, 0.95]}
If thr == -1: Threshold is 0.5-0.95
"""
precisions = getPrecisions(config, result)
recall = np.mat(np.arange(0.0, 1.01, 0.01)).T
if thr == -1:
mAP_all_pr = np.mean(precisions[:, :, :, 0, 2], axis=0)
else:
T = int((thr - 0.5) / 0.05)
mAP_all_pr = precisions[T, :, :, 0, 2]
data = np.hstack((np.hstack((recall, mAP_all_pr[:, 1:])), np.mat(np.mean(mAP_all_pr[:, 1:], axis=1)).T))
df = pd.DataFrame(data)
df.to_excel(out, index=False)